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Abstract 

Task management is one of the most basic functions of an operating system. We took μC/OS-II real-time operating system as an 

example in this paper, put forward hardware design scheme of task management based on FPGA, and carried out the simulation and 

verification by means of Xilinx ISE software. We mainly designed and implemented hardware logical circuits of task management 

module so that the potential parallelism of multitasking was greatly improved; In the meantime hardware logical circuits of interrupt 

task management module was also designed and implemented. Specifically speaking, as interrupt tasks, external interrupt requests 

enjoyed higher priorities than those of ordinary tasks. If external interrupt arrived, then corresponding task was set to ready state, thus 

task scheduling was triggered, and then interrupt task was given higher priority for processing in order that the response time was 

improved. The simulation results showed that task management implemented by hardware could obviously reduce the executing time 
of a task, thus greatly expanded the application ranges of μC/OS-II operating system. 
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1 Introduction 

 

Jaehwan Lee et al. put forward the concept of hardware 

real-time operating system (HRTOS) from the 1980s, and 

proposed that if specific hardware IP core was used to 

realize RTOS scheduler then the efficiency of RTOS 

would be greatly improved [1]. We all know that task 

scheduling is the bottleneck of affecting the performance 

of RTOS. If task scheduling is implemented by hardware, 

there is no doubt that its performance can be improved 

greatly, thus the performance of the whole RTOS is 

improved accordingly [2-5]. Takumi Nakano [6] 

developed a kind of silicon chip called STRON-I (Silicon 

OS) in the mid-1990s, and put forward the concept of 

silicon OS, using VLSI technology to implement operating 

system (TRON) by a chip hardware, so that the operating 

system can work harmoniously with microprocessor chip 

in parallel way, further ensuring high reliability of real-

time operating system. Prof. Peter Waldeck at Queensland 

University in Australia published a paper about hardware 

and software partitioning at the beginning of this century, 

in which he put forward the mature conversion among 

hardware and software modules, and the mutual 

communication method among those modules [7]. 

Moonvin Song, Sang Hong, Yunmo Chung at Kyunghee 

University in South Korea combined configurable CPU 

with RTOS by using FPGA, and obtained an efficient 

RTOS. In this design, in order to reduce the power 

consumption of RTOS, they implemented the context 

switching operations by hardware among the most time-

consuming task switching process and also interrupt 

handling [8]. Next they made some experiments on the 
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realized operating system in the multi-channel speaker 

system, with the result that its performance was improved 

by 60% compared with traditional software real-time 

operating system. Mellissa Vetromille and Luciano Ost [9] 

in Brazil realized RTOS scheduler by means of software, 

co-processor and hardware. Next, they compared and 

analysed the performance of RTOS scheduler under the 

above three cases. Finally they drew a conclusion that 

hardware scheduling model has higher performance. 

Specifically speaking, hardware scheduler model 

consisted of scheduler core, task management and 

communication interface. Paul Kohout, Brinda Ganesh 

and Bruce Jacob [10] at Maryland University in the U.S. 

have realized real-time task manager (RTM) by hardware. 

RTM fully tapped the potential parallelism of multi-

tasking, so as to minimize the overhead of real-time 

operating system, the processing time of the whole system 

caused by using RTOS was reduced up to 90%, while the 

response time was reduced up to 81%. Lounis Kessal et al. 

at French national higher electronic power application 

engineering school put forward that the optimized 

reconfigurable logical core was embedded in on-chip 

system, using hardware instead of original software to 

realize the scheduling algorithm of real-time operating 

system. The experimental results showed that using 

dynamic reconfigurable logical core instead of software to 

perform corresponding functions would greatly improve 

the performance of RTOS. 

Embedded real-time operating system (ERTOS) has 

been widely used in many fields and has become more and 

more important especially in those applications of 

complex functions and huge system. However, Traditional 
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software real-time operating system (RTOS) compiles and 

executes its core with application programs together, 

which will occupy storage space and processing time of 

applications, and influence executing efficiency of 

applications. As to such occasions as higher requirements 

for real-time performance, it is harder to make its real-time 

performance better simply by relying on improved 

scheduling algorithm. Besides, increasing the speed of 

CPU also cannot achieve ideal effect because its speed has 

reached a certain height [11, 12]. Seen from the 

development trend of computer industry, the scale of 

integrated circuits has become larger and larger, at the 

same time the cost has been greatly reduced, therefore, 

software hardening has become more and more popular. 

With the development of large scale integrated circuits and 

software hardening technology, the boundaries between 

software and hardware of a computer system has become 

blurred [13-15]. Logically speaking, hardware is 

equivalent to software, that is to say, any operation can be 

performed by software or hardware. Obviously, software 

and hardware mixed operating system provides us with a 

better solution. Specifically speaking, a part of functions 

of an operating system are implemented by hardware, and 

those functions not suitable for hardware implementation 

are still implemented by software. As is known to all, task 

management is one of the most basic functions of an 

operating system. In this paper, we took μC/OS-II as an 

example to implement hardware design based on FPGA of 

task management, especially hardware design of interrupt 

task management. 

 

2 The design of software and hardware mixed 

operating system 

 

2.1 SOFTWARE AND HARDWARE CODESIGN 

 

Usually serial instruction streams are always adopted 

during software programming model for the description of 

given problems, which is based on the thinking process of 

problem solving for human beings that any problem can be 

solved within limited time through multiple operations, but 

this model can't simulate parallel behaviors of a system. 

The biggest advantage of hardware system lies in its 

stronger parallel processing ability, but it is difficult for 

human beings to simulate this parallel characteristics, 

therefore hardware design needs to be performed through 

combining and building. The huge difference between 

software and hardware design leads to the separation of 

software and hardware design for a long time. In order to 

satisfy the constraints and design requirements of different 

operating system, we must design the mixed operating 

system by adopting the method of software and hardware 

co-design to obtain higher efficiency, lower energy 

consumption and greater flexibility. As the two bases of 

computer system, hardware and software can both restrict 

and rely on each other, at the same time can be transformed 

mutually. That is to say, some software operations can be 

implemented by hardware, and also part of hardware 

operations can be performed by software [16, 17], which 

is known as software hardening and hardware softening. 

 

2.2 THE DESIGN OF SOFTWARE AND HARDWARE 

MIXED OPERATING SYSTEM 

 

The software of mixed operating system is run by the 

microprocessor, meanwhile hardware IP core works in 

parallel with the microprocessor. The software part also 

includes the interactions between it and the hardware IP 

core in addition to some necessary functions, whose main 

functions contain two parts: one is to provide the interface 

functions to access the hardware for the software part; the 

other is to provide interrupt handle functions and return 

handle results for the hardware logic. For example, if the 

current system has tasks A and B, then the simulation 

diagram of system calls between software and hardware 

modules is shown as Figure 1. 
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FIGURE 1 The simulation diagram of system calls between software 

and hardware modules 

First, task A makes a system call, and gives the 

parameter and code address of called function module. If 

all the called function modules are implemented by 

software, then the system jumps straight to corresponding 

code address to execute, and returns the results after the 

completion. If the called function modules need to call 

hardware IP core during the software implementation 

process, then it will finish the following operations: First 

of all, it will query corresponding status registers of IP core 

to judge whether the IP core is busy or not. If the IP core 

is busy then the program will be suspended a certain 

number of clock cycles; On the contrary, if the IP core is 

not busy then control signal is sent by rewriting the control 

register of hardware IP core, meantime the parameters are 

written into data registers of hardware IP core, and triggers 
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executing, rewrites the status registers, write the data 

results into data registers after executing. After task A 

regains the microprocessor, it will read back the results by 

confirming the results have been written into data registers. 

Task A can be suspended a few clock cycles during 

hardware IP core is executing, thus the microprocessor can 

execute other tasks, such as task B in this example. As soon 

as the suspended time arrives, task A is entered back into 

the ready list for scheduling. The operations of hardware 

IP core here are similar to the critical resources of an 

operating system. 

The software part of hardware IP core calls can be 

implemented by interrupt. When an interrupt occurs, the 

microprocessor will stop executing the current task, save 

the sites, and enter into corresponding interrupt handle 

program according to the interrupt number triggered by 

hardware IP core. At the same time hardware IP core will 

not wait until the software part completes writing data into 

control or data registers. The microprocessor will return to 

original task to execute after it finishes corresponding 

interrupt process. 
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FIGURE 2 The task structure of μC/OS-II in memory 

 
3 Hardware implementation of task management in 
μC/OS-II operating system 

 
Task management is one of the most basic functions of an 
operating system. First we perform the hardware design of 
μC/OS-II task management. Its task management can be 
divided into the following parts: creation, deletion, 
suspension, restoration, inquiry and scheduling of tasks, 
etc. 
 
3.1 TASK STRUCTURE AND SYSTEM CALLS OF 

ΜC/OS-II 
 
Each task of μC/OS-II is composed of three parts, they are 
task program code, task stack and TCB (Task Control 
Block). Among them, TCB is used to store the task 
properties; Task stack is used to store the working 
environment of a task. The task code is the executed part 
of a task. TCB is the basic attribute of a task managed by 
the operating system. When the right of a task to use CPU 
is deprived, Its TCB is used to store the task state in 
μC/OS-II operating system. When the task regains the 
right to use CPU, Its TCB will confirm that the task can be 
executed faithfully from the breakpoint. In order to 
facilitate management, μC/OS-II treats each task as a node, 

and then links into a task list, as shown in Figure 2. The 
system call functions of task management of μC/OS-II are 
shown as Table 1, which are listed below: create, delete, 
suspend, restore and query a task, etc. 

TABLE 1 The system call functions of task management module 

System call functions Performed functions 

OSTaskCreate (void(* task) (void* pd), 

void * pdata, INT8U prio) 
Create a task 

OSTaskDel (INT8U prio) Delete a task 

OSTaskPend (INT8U prio) Suspend a task 

OSTaskPost (INT8U prio) Restore a task 

OSTaskQuery (INT8U prio) Query a task 

 

3.2 THE BASIC OPERATIONS OF TASK 

MANAGEMENT 

 
During the hardware implementation of task management 
system calls, data structures such as task code segment 
address, task priority, the parameter pointer of task and the 
stack pointer distributed to a task are all stored in its TCB. 

1) Create a task. 
First, the ready list of tasks is read to judge whether the 

task to be created has already existed, if so then a creation 
error will be returned, otherwise the task priority will be 
written into the ready list. Next the state of the created task 
is set to busy, the data to create a task is written into its 
task stack, its relevant TCB will be initialized, OS 
scheduler will be called and the state of the task is set to 
free. 

2) Delete a task. 
Ready list and waiting list are inquired to judge 

whether the current task priority has already existed, if not 
then a deletion error will be returned, otherwise the records 
will be deleted in the relevant lists. Next corresponding 
Task_Del_Hook module will be called to clean up the task 
stack and its TCB to return Derr. The state of current 
module is commonly controlled by Cerr and Derr, and the 
state of current module is set to 0 after the creation or 
deletion of a task is performed. 

3) Suspend and Restore a task. 
Specifically speaking, the current state of the task is 

changed, and the values in the ready list and waiting list 
are also modified. We all know that we can find 
corresponding TCB according to the ID of a task, thus the 
state of the task can be changed by modifying the value of 
corresponding state register. In the following, the present 
value in the ready list and the data in the waiting list 
corresponding to resource request are changed. A task 
scheduling will be triggered after all the above operations 
have been performed. 

We give simplified logic in Figure 3. In order to save 
the hardware resources, we reuse each logic component as 
much as possible. The whole figure can be divided into 
three parts: specific part of task creation, specific part of 
task deletion and their public part. 
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FIGURE 3 The creation and deletion of a task 

 

3.3 READY LIST 

 

Like waiting list, ready list is one of the most frequently 

operated data structures in task management. We put 

forward a more superior hardware implementation method 

in this paper and logical diagram is shown as Figure 4. The 

ready list adopts clock synchronization signal, all the 

storage units are set 0 by using Clr signal when they are 

initialized. The main operations of ready list can be 

divided into two kinds of reading and writing. Reading 

ready list can be further divided into two kinds: inquiring 

the current highest priority task to find if a task is in ready 

state. The control circuit sends reading signal to all of data 

storage units for this purpose, then the system can get the 

highest priority task according to two binary eight digits 

outputted to the data lines, and its priority is outputted to 

Prio signal. On the other hand, in order to inquire if a task 

is in ready state, the priority of current task is inputted as 

Sid signal, and is compared with the output of the current 

data line. If current priority exists, then Ud signal is set 

high output, otherwise low. In order to write the ready list, 

the higher 3 bits of the priority are sent to Sid0~Sid2, lower 

3 bits to Sid3~Sid5, the desired storage unit is chosen after 

decoding, and the stored data can be flipped according to 

writing signal. 

 

3.4 TASK SCHEDULING 

 

Task scheduling of μC/OS-II is commonly called by other 

system functions with the result that the highest priority 

task can obtain the microprocessor resource. Any change 

of a task state will trigger a task scheduling, but not 

necessarily produces switching. Figure 5 describes the 

simplified logical diagram of task scheduler. We can set 

the Q-output of the trigger to 0 by Set signal. If we 

determine the state of current module is free, and not in the 

interrupt service state, then we can compare the task with 

the highest priority in the waiting list and the one which is 

running, if the former is lower than the latter, then we will 

do nothing, otherwise we will call switching function. 

 

3.5 HARDWARE DESIGN OF INTERRUPT TASK 

MANAGEMENT 

 

1) The overall design of interrupt task management 

module. 

The internal structure of interrupt management module 

is shown as Figure 6. Interrupt management module is 

composed of interrupt request module and interrupt task 

control block (INT_Task_TCB). Interrupt request module 

receives external interrupt request signals, and finds out 

such interrupt request which has the highest priority and 

has not been masked, then it responds to IRi request, sends 

interrupt request signal INT, and outputs the approved 

interrupt vector number after the arbitration as the basis for 

CPU to find the entry point of interrupt service routine. 

INT_Task_TCB will assign the INT signal to the state bit 

of corresponding interrupt task according to interrupt 

vector number, and set corresponding interrupt task to 

ready state. Both interrupt tasks and ordinary tasks are 
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together scheduled by the scheduler. Besides, the priority 

of interrupt task is higher than that of ordinary task, 

therefore, interrupt task will gain the right to use CPU and 

be performed immediately. 

2) Interrupt request module. 

As shown in Figure 7, interrupt request logic is 

composed of five modules, which are listed respectively 

below: interrupt request register, the priority encoder, 

interrupt service register, interrupt mask register and 

comparator. The function of interrupt request module is to 

queue the inputted interrupt requests, judge their priorities, 

and store the priority of interrupt request which is being 

served [18,19]. 
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FIGURE 4 Logic diagram of ready list 
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FIGURE 5 Simplified logical diagram of task scheduler 

 

Interrupt 

Mask 

Register

(IMR)

C
o

m
p

a
r
a
t
o

r

Interrupt 

Request 

Register

(IRR)

Interrupt 

Service 

Register

（ISR）

Control Logic

IR0

IR1

IR2

IRi

ID

PRI
RDY

...

ID

PRI
RDY

ID

PRI
RDY

INT

Poll Interrupt 

Vector

INT_Task_TCB

V
a
l
i
d

 I
n

t
e
r
r
u

p
t
 

R
e
q

u
e
s
t

DIN

WR RD INTA RST CLK

ISR_set
ISR_clr

smm

...
...

 
 

FIGURE 6 The internal structure of interrupt management module 
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FIGURE 7 Logical circuit of interrupt request processing 

 

3.6 SIMULATION AND EXPERIMENTAL RESULTS 

 

1) The simulation results of interrupt task management. 

First, we programmed the codes for interrupt task 

management by VHDL language; then synthesized, 

debugged and simulated by Xilinx ISE software. Finally 

the simulation results of interrupt request register, interrupt 

priority comparator and interrupt service register are 

shown as Figure 8, Figure 9, and Figure 10. The simulation 

waveform diagram of interrupt request register is shown as 

Figure 8. First, mrst_n=0, the system is reset and all of the 

system registers are cleared to zero. If IR1, IR3 and IR4 of 

IR register are set to high voltage, then D1, D3, and D4 of 

IRR are all set to 1 to latch the three interrupt requests. At 

the same time D3 of IMR is set to 1, that is to say, the 

system masks the interrupt request offered by IR3. Then 

D1 and D4 of masked_irr [7:0] are set to 1, indicating that 

the system can receive effective interrupt requests offered 

by IR1 and IR4. 

The simulation waveform diagram of interrupt priority 

comparison is shown as Figure 9. D1 and D4 of IRR are 

set to 1, indicating that IR1 and IR4 offer interrupt requests. 

At the same time, D6 of the current service register is set 

to 1, indicating that the system is executing the interrupt 

request offered by IR6. Because the priority of IR1 is 

higher than that of IR6, the system responds the interrupt 

request offered by IR1 and sets INT=1, at the same time 

set_isr [7:0] saves the current highest priority interrupt 

request. 

The simulation waveform diagram of interrupt service 

register is shown as Figure 10. When isr_set_stb=1, the 

value saved by set_isr [7:0] is rewritten into ISR, and the 

current interrupt vector number is outputted by poll_vector 

[7:0]. If poll_vector [7] = 1, then it indicates that there is 

an interrupt request. On the contrary, If poll_vector [7] = 

0, then it indicates that there isn’t an interrupt request. 
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poll_vector [2:0] is the number of interrupt which is being 

served. If responded interrupt request currently is IR1, then 

poll_vector [2:0] is set to 001. Next the system finds the 

location of an interrupt task control block by taking the 

interrupt vector number as selecting criteria, and sets 

corresponding state bit to 1, indicating that it is ready. 

 

 

 
FIGURE 8 Simulation waveform diagram of interrupt request register 

 
FIGURE 9 The comparison of interrupt priority 

 
FIGURE 10 Simulation waveform diagram of interrupt service register 

 
2) The simulation result of hardware implementation of 
task management. 

The simulation result of hardware implementation of 
task management is shown as Figure 11. 

(1) Create a task. During the simulation process, we 
create three tasks in turn, whose priority in the system is 

decimal 7, 1 and 6 respectively. After we create the task 
whose ID is decimal 7 we perform task scheduling, and 
obtain the highest priority task is decimal 7 in the ready 
list, therefore Next_task_id is set to 7; Next we create the 
task whose priority is decimal 1, and perform task 
scheduling again. Due to the scheduling rule is that the 
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higher priority task will have the right of using CPU, so 
Next_task_id is set to 1, and perform task switching. Task 
scheduling is performed for the third time after the task 
whose priority is decimal 6 is created, but currently the 

highest priority task is running, so we don’t perform task 
switching. 
 

 

FIGURE 11 Simulation waveform diagram of task management implemented by hardware 

 
(2) Inquire a task. We can complete task information 

inquiry by calling functions. If the processor inquires the 
task whose priority is 0, then the output result includes task 
priority and other TCB data. 

(3) Suspend a task. We can suspend currently running 
task whose priority is 1, which will automatically evoke 
scheduling module and perform task scheduling again, 
then the task whose priority is 6 will obtain CPU to run. 
The suspended task will keep waiting state before it is 
restored. 

(4) Recreate a task. Based on the above description, 
three tasks whose priority is decimal 5, 2 and 4 
respectively are created. System scheduling will be 
triggered after the task whose priority is 5 is created, with 
the result that the task whose priority is 6 is deprived of the 
right to use CPU, and the task whose priority is 5 will gain 
the right to use CPU. In the following, another system 
scheduling will be triggered after the task whose priority 
is 2 is created with the similar result that the task whose 
priority is 5 is deprived of the right to use CPU, and the 
task whose priority is 2 will gain the right to use CPU and 
start executing. Similarly, the creation of a task whose 
priority is 4 will also trigger additional task scheduling. 
Because its priority is lower than that of the task whose 
priority is 2, it is set to ready state and it can’t preempt the 
right to use CPU. 

(5) Delete a task. Suppose we have created tasks whose 
priority is decimal 5, 2 and 4 respectively as shown in 
Figure 11. If we delete task 2, then we can trigger a task 
scheduling. Because task 4 has highest priority and is in 
ready state in the current system, task 4 will gain the right 
to use CPU to run. 

(6) Restore a task. If we restore the task whose priority 
is 1, then its state will change and be written back to ready 
list, thus a task scheduling will be triggered with the result 
that task 1 will have the right to use CPU. After task 
switching, the task whose priority is 1 will be executed. 

We know that the system will obtain higher efficiency 
if task management is implemented by hardware from 

Figure 11. The creation and deletion of a task will need 
three clock beats respectively; By contrast, the suspension, 
restoration and inquiry of a task will need only one clock 
beat respectively. 
 
4 Discussion 
 
On [20], a new three-level resource management that is 
based on two methods is presented. That is to say, a 
complete analytic method and an approximate iterative 
method. For both methods, the placement quality is 
measured by the rate of resource efficiency and by the 
amount of configuration overhead. But the dependency 
between tasks should be investigated. Inter-task 
communication might be an important criterion in 
deciding on the most optimal RZ fitting. 

In [21], a complete model and implementation of the 
lightweight and portable OS4RS supporting preemptible 
and clock-scalable HW tasks was presented. While DFS 
was discussed in the context of FPGAs by the previous 
works, none of them proposed a complete model and 
implementation of the OS4RS architecture supporting this 
concept. The DFS allows improving performance of the 
SW-HW code signed applications and avoid some of the 
restrictions imposed by the underlying DPR technology. 
But the overall performance results could be further 
improved if better HLS tools were used. 

In [22], a new approach for scheduling and placement 
of task on a dynamic reconfigurable device based on 
reflected binary gray space filling curve method is being 
presented with the goal of minimizing task rejection ratio 
and increasing FPGA utilization. The free space is 
managed as one dimensional run-length based 
representation. Also, a new method to find the 
fragmentation is used. But the algorithm does not consider 
routability, I/O communication, and heterogeneous FPGA. 
The algorithm can be improved to reduce the total 
reconfiguration overhead by reusing some of the task 
locations. 
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In [23], a novel scheduling algorithm and two novel 
allocation heuristics have been presented in the scope of 
R3TOS project. The effectiveness of the proposed 
algorithms is tested by means of a wide range of synthetic 
simulations, but the evaluation of these approaches in a 
real-world application is still under way. 
 
5 Conclusions 
 
We fully understood the present situations and 
development trend of real-time operating system at home 
and abroad, combined with the principle of μC/OS-II and 
characteristics of FPGA technology, then put forward the 
design scheme of hardware RTOS based on FPGA. Using 
FPGA to realize the process of task management module 

was emphasized. Specifically speaking, we implemented 
the creation and deletion of a task, designed the logical 
circuits of ready list and interrupt task management by 
hardware. We also completed system debugging and 
functional verification by means of Xilinx ISE software. 
The simulation results showed that the implementation of 
task management by hardware kept the correctness of 
system calls, at the same time reduced the execution time 
of system calls and the overhead of CPU. 
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