

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 678-685 Zhu Shihai

678

FPGA-based implementation of task management in μC/OS-II
operating system

Shihai Zhu*

Institute of Information Engineering and Art Design, Zhejiang University of Water Resources and Electric Power, Hangzhou, China

Received 23 November 2014, www.cmnt.lv

Abstract

Task management is one of the most basic functions of an operating system. We took μC/OS-II real-time operating system as an

example in this paper, put forward hardware design scheme of task management based on FPGA, and carried out the simulation and

verification by means of Xilinx ISE software. We mainly designed and implemented hardware logical circuits of task management

module so that the potential parallelism of multitasking was greatly improved; In the meantime hardware logical circuits of interrupt

task management module was also designed and implemented. Specifically speaking, as interrupt tasks, external interrupt requests

enjoyed higher priorities than those of ordinary tasks. If external interrupt arrived, then corresponding task was set to ready state, thus

task scheduling was triggered, and then interrupt task was given higher priority for processing in order that the response time was

improved. The simulation results showed that task management implemented by hardware could obviously reduce the executing time
of a task, thus greatly expanded the application ranges of μC/OS-II operating system.

Keywords: RTOS, FPGA, task management, task scheduling, interrupt

1 Introduction

Jaehwan Lee et al. put forward the concept of hardware

real-time operating system (HRTOS) from the 1980s, and

proposed that if specific hardware IP core was used to

realize RTOS scheduler then the efficiency of RTOS

would be greatly improved [1]. We all know that task

scheduling is the bottleneck of affecting the performance

of RTOS. If task scheduling is implemented by hardware,

there is no doubt that its performance can be improved

greatly, thus the performance of the whole RTOS is

improved accordingly [2-5]. Takumi Nakano [6]

developed a kind of silicon chip called STRON-I (Silicon

OS) in the mid-1990s, and put forward the concept of

silicon OS, using VLSI technology to implement operating

system (TRON) by a chip hardware, so that the operating

system can work harmoniously with microprocessor chip

in parallel way, further ensuring high reliability of real-

time operating system. Prof. Peter Waldeck at Queensland

University in Australia published a paper about hardware

and software partitioning at the beginning of this century,

in which he put forward the mature conversion among

hardware and software modules, and the mutual

communication method among those modules [7].

Moonvin Song, Sang Hong, Yunmo Chung at Kyunghee

University in South Korea combined configurable CPU

with RTOS by using FPGA, and obtained an efficient

RTOS. In this design, in order to reduce the power

consumption of RTOS, they implemented the context

switching operations by hardware among the most time-

consuming task switching process and also interrupt

handling [8]. Next they made some experiments on the

* Corresponding author’s e-mail: zhushh@zjweu.edu.cn

realized operating system in the multi-channel speaker

system, with the result that its performance was improved

by 60% compared with traditional software real-time

operating system. Mellissa Vetromille and Luciano Ost [9]

in Brazil realized RTOS scheduler by means of software,

co-processor and hardware. Next, they compared and

analysed the performance of RTOS scheduler under the

above three cases. Finally they drew a conclusion that

hardware scheduling model has higher performance.

Specifically speaking, hardware scheduler model

consisted of scheduler core, task management and

communication interface. Paul Kohout, Brinda Ganesh

and Bruce Jacob [10] at Maryland University in the U.S.

have realized real-time task manager (RTM) by hardware.

RTM fully tapped the potential parallelism of multi-

tasking, so as to minimize the overhead of real-time

operating system, the processing time of the whole system

caused by using RTOS was reduced up to 90%, while the

response time was reduced up to 81%. Lounis Kessal et al.

at French national higher electronic power application

engineering school put forward that the optimized

reconfigurable logical core was embedded in on-chip

system, using hardware instead of original software to

realize the scheduling algorithm of real-time operating

system. The experimental results showed that using

dynamic reconfigurable logical core instead of software to

perform corresponding functions would greatly improve

the performance of RTOS.

Embedded real-time operating system (ERTOS) has

been widely used in many fields and has become more and

more important especially in those applications of

complex functions and huge system. However, Traditional

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 678-685 Zhu Shihai

679

software real-time operating system (RTOS) compiles and

executes its core with application programs together,

which will occupy storage space and processing time of

applications, and influence executing efficiency of

applications. As to such occasions as higher requirements

for real-time performance, it is harder to make its real-time

performance better simply by relying on improved

scheduling algorithm. Besides, increasing the speed of

CPU also cannot achieve ideal effect because its speed has

reached a certain height [11, 12]. Seen from the

development trend of computer industry, the scale of

integrated circuits has become larger and larger, at the

same time the cost has been greatly reduced, therefore,

software hardening has become more and more popular.

With the development of large scale integrated circuits and

software hardening technology, the boundaries between

software and hardware of a computer system has become

blurred [13-15]. Logically speaking, hardware is

equivalent to software, that is to say, any operation can be

performed by software or hardware. Obviously, software

and hardware mixed operating system provides us with a

better solution. Specifically speaking, a part of functions

of an operating system are implemented by hardware, and

those functions not suitable for hardware implementation

are still implemented by software. As is known to all, task

management is one of the most basic functions of an

operating system. In this paper, we took μC/OS-II as an

example to implement hardware design based on FPGA of

task management, especially hardware design of interrupt

task management.

2 The design of software and hardware mixed

operating system

2.1 SOFTWARE AND HARDWARE CODESIGN

Usually serial instruction streams are always adopted

during software programming model for the description of

given problems, which is based on the thinking process of

problem solving for human beings that any problem can be

solved within limited time through multiple operations, but

this model can't simulate parallel behaviors of a system.

The biggest advantage of hardware system lies in its

stronger parallel processing ability, but it is difficult for

human beings to simulate this parallel characteristics,

therefore hardware design needs to be performed through

combining and building. The huge difference between

software and hardware design leads to the separation of

software and hardware design for a long time. In order to

satisfy the constraints and design requirements of different

operating system, we must design the mixed operating

system by adopting the method of software and hardware

co-design to obtain higher efficiency, lower energy

consumption and greater flexibility. As the two bases of

computer system, hardware and software can both restrict

and rely on each other, at the same time can be transformed

mutually. That is to say, some software operations can be

implemented by hardware, and also part of hardware

operations can be performed by software [16, 17], which

is known as software hardening and hardware softening.

2.2 THE DESIGN OF SOFTWARE AND HARDWARE

MIXED OPERATING SYSTEM

The software of mixed operating system is run by the

microprocessor, meanwhile hardware IP core works in

parallel with the microprocessor. The software part also

includes the interactions between it and the hardware IP

core in addition to some necessary functions, whose main

functions contain two parts: one is to provide the interface

functions to access the hardware for the software part; the

other is to provide interrupt handle functions and return

handle results for the hardware logic. For example, if the

current system has tasks A and B, then the simulation

diagram of system calls between software and hardware

modules is shown as Figure 1.

Software

components

Hardware

IP core

Application

programs

System

calls

The address of

parameters and

codes

Hardware IP

is called

Parameters and

address
Task B is

executed by the

microprocessor Software

components

are called

The interrupt address

and parameter are

generated
The site of task

B is protected

Interrupt

handle

Interrupt

return

Data results are

written back

Data results are

written back

Data results

are returned

The site of task

B is recovered

Task A is

executed by the

microprocessor

Task A

regained the

microprocessor

The site of

task A is

protected

The site of

task A is

recovered

FIGURE 1 The simulation diagram of system calls between software

and hardware modules

First, task A makes a system call, and gives the

parameter and code address of called function module. If

all the called function modules are implemented by

software, then the system jumps straight to corresponding

code address to execute, and returns the results after the

completion. If the called function modules need to call

hardware IP core during the software implementation

process, then it will finish the following operations: First

of all, it will query corresponding status registers of IP core

to judge whether the IP core is busy or not. If the IP core

is busy then the program will be suspended a certain

number of clock cycles; On the contrary, if the IP core is

not busy then control signal is sent by rewriting the control

register of hardware IP core, meantime the parameters are

written into data registers of hardware IP core, and triggers

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 678-685 Zhu Shihai

680

executing, rewrites the status registers, write the data

results into data registers after executing. After task A

regains the microprocessor, it will read back the results by

confirming the results have been written into data registers.

Task A can be suspended a few clock cycles during

hardware IP core is executing, thus the microprocessor can

execute other tasks, such as task B in this example. As soon

as the suspended time arrives, task A is entered back into

the ready list for scheduling. The operations of hardware

IP core here are similar to the critical resources of an

operating system.

The software part of hardware IP core calls can be

implemented by interrupt. When an interrupt occurs, the

microprocessor will stop executing the current task, save

the sites, and enter into corresponding interrupt handle

program according to the interrupt number triggered by

hardware IP core. At the same time hardware IP core will

not wait until the software part completes writing data into

control or data registers. The microprocessor will return to

original task to execute after it finishes corresponding

interrupt process.

Task

Code

Task

Stack

Prev

Next

TCB Task

Code

Task

Stack

Prev

Next

TCB Task

Code

Task

Stack

Prev

Next

TCB

……

FIGURE 2 The task structure of μC/OS-II in memory

3 Hardware implementation of task management in
μC/OS-II operating system

Task management is one of the most basic functions of an
operating system. First we perform the hardware design of
μC/OS-II task management. Its task management can be
divided into the following parts: creation, deletion,
suspension, restoration, inquiry and scheduling of tasks,
etc.

3.1 TASK STRUCTURE AND SYSTEM CALLS OF

ΜC/OS-II

Each task of μC/OS-II is composed of three parts, they are
task program code, task stack and TCB (Task Control
Block). Among them, TCB is used to store the task
properties; Task stack is used to store the working
environment of a task. The task code is the executed part
of a task. TCB is the basic attribute of a task managed by
the operating system. When the right of a task to use CPU
is deprived, Its TCB is used to store the task state in
μC/OS-II operating system. When the task regains the
right to use CPU, Its TCB will confirm that the task can be
executed faithfully from the breakpoint. In order to
facilitate management, μC/OS-II treats each task as a node,

and then links into a task list, as shown in Figure 2. The
system call functions of task management of μC/OS-II are
shown as Table 1, which are listed below: create, delete,
suspend, restore and query a task, etc.

TABLE 1 The system call functions of task management module

System call functions Performed functions

OSTaskCreate (void(* task) (void* pd),

void * pdata, INT8U prio)
Create a task

OSTaskDel (INT8U prio) Delete a task

OSTaskPend (INT8U prio) Suspend a task

OSTaskPost (INT8U prio) Restore a task

OSTaskQuery (INT8U prio) Query a task

3.2 THE BASIC OPERATIONS OF TASK

MANAGEMENT

During the hardware implementation of task management
system calls, data structures such as task code segment
address, task priority, the parameter pointer of task and the
stack pointer distributed to a task are all stored in its TCB.

1) Create a task.
First, the ready list of tasks is read to judge whether the

task to be created has already existed, if so then a creation
error will be returned, otherwise the task priority will be
written into the ready list. Next the state of the created task
is set to busy, the data to create a task is written into its
task stack, its relevant TCB will be initialized, OS
scheduler will be called and the state of the task is set to
free.

2) Delete a task.
Ready list and waiting list are inquired to judge

whether the current task priority has already existed, if not
then a deletion error will be returned, otherwise the records
will be deleted in the relevant lists. Next corresponding
Task_Del_Hook module will be called to clean up the task
stack and its TCB to return Derr. The state of current
module is commonly controlled by Cerr and Derr, and the
state of current module is set to 0 after the creation or
deletion of a task is performed.

3) Suspend and Restore a task.
Specifically speaking, the current state of the task is

changed, and the values in the ready list and waiting list
are also modified. We all know that we can find
corresponding TCB according to the ID of a task, thus the
state of the task can be changed by modifying the value of
corresponding state register. In the following, the present
value in the ready list and the data in the waiting list
corresponding to resource request are changed. A task
scheduling will be triggered after all the above operations
have been performed.

We give simplified logic in Figure 3. In order to save
the hardware resources, we reuse each logic component as
much as possible. The whole figure can be divided into
three parts: specific part of task creation, specific part of
task deletion and their public part.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 678-685 Zhu Shihai

681

A

H

Q1

Q8

ENB

Rdy_Tbl

Cre

C

M

P
0

Prio

Write

Rdy_Tbl

Q

Q
SET

CLR

D

Cerr

Q

Q
SET

CLR

D

Task_St

k_Init
TCB_Init Cerr

psp

PrioCre_data_in

clk

Cre_err

Del

Cre

A

H

Q1

Q8

ENB

Event_Tbl C

M

P0

Del

Del_err

Del

clk

Task_Del_Hook

Write

Event_Tbl

Derr

Derr

Del_err

Cre_err

The creation

of a task

The

deletion

of a task

FIGURE 3 The creation and deletion of a task

3.3 READY LIST

Like waiting list, ready list is one of the most frequently

operated data structures in task management. We put

forward a more superior hardware implementation method

in this paper and logical diagram is shown as Figure 4. The

ready list adopts clock synchronization signal, all the

storage units are set 0 by using Clr signal when they are

initialized. The main operations of ready list can be

divided into two kinds of reading and writing. Reading

ready list can be further divided into two kinds: inquiring

the current highest priority task to find if a task is in ready

state. The control circuit sends reading signal to all of data

storage units for this purpose, then the system can get the

highest priority task according to two binary eight digits

outputted to the data lines, and its priority is outputted to

Prio signal. On the other hand, in order to inquire if a task

is in ready state, the priority of current task is inputted as

Sid signal, and is compared with the output of the current

data line. If current priority exists, then Ud signal is set

high output, otherwise low. In order to write the ready list,

the higher 3 bits of the priority are sent to Sid0~Sid2, lower

3 bits to Sid3~Sid5, the desired storage unit is chosen after

decoding, and the stored data can be flipped according to

writing signal.

3.4 TASK SCHEDULING

Task scheduling of μC/OS-II is commonly called by other

system functions with the result that the highest priority

task can obtain the microprocessor resource. Any change

of a task state will trigger a task scheduling, but not

necessarily produces switching. Figure 5 describes the

simplified logical diagram of task scheduler. We can set

the Q-output of the trigger to 0 by Set signal. If we

determine the state of current module is free, and not in the

interrupt service state, then we can compare the task with

the highest priority in the waiting list and the one which is

running, if the former is lower than the latter, then we will

do nothing, otherwise we will call switching function.

3.5 HARDWARE DESIGN OF INTERRUPT TASK

MANAGEMENT

1) The overall design of interrupt task management

module.

The internal structure of interrupt management module

is shown as Figure 6. Interrupt management module is

composed of interrupt request module and interrupt task

control block (INT_Task_TCB). Interrupt request module

receives external interrupt request signals, and finds out

such interrupt request which has the highest priority and

has not been masked, then it responds to IRi request, sends

interrupt request signal INT, and outputs the approved

interrupt vector number after the arbitration as the basis for

CPU to find the entry point of interrupt service routine.

INT_Task_TCB will assign the INT signal to the state bit

of corresponding interrupt task according to interrupt

vector number, and set corresponding interrupt task to

ready state. Both interrupt tasks and ordinary tasks are

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 678-685 Zhu Shihai

682

together scheduled by the scheduler. Besides, the priority

of interrupt task is higher than that of ordinary task,

therefore, interrupt task will gain the right to use CPU and

be performed immediately.

2) Interrupt request module.

As shown in Figure 7, interrupt request logic is

composed of five modules, which are listed respectively

below: interrupt request register, the priority encoder,

interrupt service register, interrupt mask register and

comparator. The function of interrupt request module is to

queue the inputted interrupt requests, judge their priorities,

and store the priority of interrupt request which is being

served [18,19].

R
o

w
 a

d
d
re

ss d
e
c
o

d
e
r

Column address decoder

0

C
o

n
tro

l c
irc

u
it

Data bus

…

…

…

… Storage

unit

Wr

Clr

Clk

…

Rd

Prio

Sid5

Sid4

Sid3

Sid2 Sid1 Sid0

77

Sid

00

0/1

0/1

0

0/1

0

0/1

01

10

01

…… …
Ud

FIGURE 4 Logic diagram of ready list

Q

Q
SET

CLR

D

NestInt

Set

C
o
m

p
a
r
a
t
o
r

Prio Current_Task

Next_task_id

En

Task_

Switch

FIGURE 5 Simplified logical diagram of task scheduler

Interrupt

Mask

Register

(IMR)

C
o

m
p

a
r
a
t
o

r

Interrupt

Request

Register

(IRR)

Interrupt

Service

Register

（ISR）

Control Logic

IR0

IR1

IR2

IRi

ID

PRI
RDY

...

ID

PRI
RDY

ID

PRI
RDY

INT

Poll Interrupt

Vector

INT_Task_TCB

V
a
l
i
d

 I
n

t
e
r
r
u

p
t

R
e
q

u
e
s
t

DIN

WR RD INTA RST CLK

ISR_set
ISR_clr

smm

...
...

FIGURE 6 The internal structure of interrupt management module

In
te

rru
p

t R
e
q

u
e
st R

e
g

iste
r

In
te

rru
p

t M
a
sk

R
e
g

iste
r

T
h

e
 P

rio
rity

 E
n

c
o

d
e
r

 C
o

m
p

a
ra

to
r

OR n

IR0

IR1

IR2

IR3

IR5

IR4

IR6

IR7

D0
D1

D3

D5
D6
D7

D4

D2

A0
A1
A2

B0
B1

B2

A>B

INT

The current

service priority

from ISR

In
te

rru
p

t S
e
rv

ic
e

R
e
g

iste
r

FIGURE 7 Logical circuit of interrupt request processing

3.6 SIMULATION AND EXPERIMENTAL RESULTS

1) The simulation results of interrupt task management.

First, we programmed the codes for interrupt task

management by VHDL language; then synthesized,

debugged and simulated by Xilinx ISE software. Finally

the simulation results of interrupt request register, interrupt

priority comparator and interrupt service register are

shown as Figure 8, Figure 9, and Figure 10. The simulation

waveform diagram of interrupt request register is shown as

Figure 8. First, mrst_n=0, the system is reset and all of the

system registers are cleared to zero. If IR1, IR3 and IR4 of

IR register are set to high voltage, then D1, D3, and D4 of

IRR are all set to 1 to latch the three interrupt requests. At

the same time D3 of IMR is set to 1, that is to say, the

system masks the interrupt request offered by IR3. Then

D1 and D4 of masked_irr [7:0] are set to 1, indicating that

the system can receive effective interrupt requests offered

by IR1 and IR4.

The simulation waveform diagram of interrupt priority

comparison is shown as Figure 9. D1 and D4 of IRR are

set to 1, indicating that IR1 and IR4 offer interrupt requests.

At the same time, D6 of the current service register is set

to 1, indicating that the system is executing the interrupt

request offered by IR6. Because the priority of IR1 is

higher than that of IR6, the system responds the interrupt

request offered by IR1 and sets INT=1, at the same time

set_isr [7:0] saves the current highest priority interrupt

request.

The simulation waveform diagram of interrupt service

register is shown as Figure 10. When isr_set_stb=1, the

value saved by set_isr [7:0] is rewritten into ISR, and the

current interrupt vector number is outputted by poll_vector

[7:0]. If poll_vector [7] = 1, then it indicates that there is

an interrupt request. On the contrary, If poll_vector [7] =

0, then it indicates that there isn’t an interrupt request.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 678-685 Zhu Shihai

683

poll_vector [2:0] is the number of interrupt which is being

served. If responded interrupt request currently is IR1, then

poll_vector [2:0] is set to 001. Next the system finds the

location of an interrupt task control block by taking the

interrupt vector number as selecting criteria, and sets

corresponding state bit to 1, indicating that it is ready.

FIGURE 8 Simulation waveform diagram of interrupt request register

FIGURE 9 The comparison of interrupt priority

FIGURE 10 Simulation waveform diagram of interrupt service register

2) The simulation result of hardware implementation of
task management.

The simulation result of hardware implementation of
task management is shown as Figure 11.

(1) Create a task. During the simulation process, we
create three tasks in turn, whose priority in the system is

decimal 7, 1 and 6 respectively. After we create the task
whose ID is decimal 7 we perform task scheduling, and
obtain the highest priority task is decimal 7 in the ready
list, therefore Next_task_id is set to 7; Next we create the
task whose priority is decimal 1, and perform task
scheduling again. Due to the scheduling rule is that the

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 678-685 Zhu Shihai

684

higher priority task will have the right of using CPU, so
Next_task_id is set to 1, and perform task switching. Task
scheduling is performed for the third time after the task
whose priority is decimal 6 is created, but currently the

highest priority task is running, so we don’t perform task
switching.

FIGURE 11 Simulation waveform diagram of task management implemented by hardware

(2) Inquire a task. We can complete task information

inquiry by calling functions. If the processor inquires the
task whose priority is 0, then the output result includes task
priority and other TCB data.

(3) Suspend a task. We can suspend currently running
task whose priority is 1, which will automatically evoke
scheduling module and perform task scheduling again,
then the task whose priority is 6 will obtain CPU to run.
The suspended task will keep waiting state before it is
restored.

(4) Recreate a task. Based on the above description,
three tasks whose priority is decimal 5, 2 and 4
respectively are created. System scheduling will be
triggered after the task whose priority is 5 is created, with
the result that the task whose priority is 6 is deprived of the
right to use CPU, and the task whose priority is 5 will gain
the right to use CPU. In the following, another system
scheduling will be triggered after the task whose priority
is 2 is created with the similar result that the task whose
priority is 5 is deprived of the right to use CPU, and the
task whose priority is 2 will gain the right to use CPU and
start executing. Similarly, the creation of a task whose
priority is 4 will also trigger additional task scheduling.
Because its priority is lower than that of the task whose
priority is 2, it is set to ready state and it can’t preempt the
right to use CPU.

(5) Delete a task. Suppose we have created tasks whose
priority is decimal 5, 2 and 4 respectively as shown in
Figure 11. If we delete task 2, then we can trigger a task
scheduling. Because task 4 has highest priority and is in
ready state in the current system, task 4 will gain the right
to use CPU to run.

(6) Restore a task. If we restore the task whose priority
is 1, then its state will change and be written back to ready
list, thus a task scheduling will be triggered with the result
that task 1 will have the right to use CPU. After task
switching, the task whose priority is 1 will be executed.

We know that the system will obtain higher efficiency
if task management is implemented by hardware from

Figure 11. The creation and deletion of a task will need
three clock beats respectively; By contrast, the suspension,
restoration and inquiry of a task will need only one clock
beat respectively.

4 Discussion

On [20], a new three-level resource management that is
based on two methods is presented. That is to say, a
complete analytic method and an approximate iterative
method. For both methods, the placement quality is
measured by the rate of resource efficiency and by the
amount of configuration overhead. But the dependency
between tasks should be investigated. Inter-task
communication might be an important criterion in
deciding on the most optimal RZ fitting.

In [21], a complete model and implementation of the
lightweight and portable OS4RS supporting preemptible
and clock-scalable HW tasks was presented. While DFS
was discussed in the context of FPGAs by the previous
works, none of them proposed a complete model and
implementation of the OS4RS architecture supporting this
concept. The DFS allows improving performance of the
SW-HW code signed applications and avoid some of the
restrictions imposed by the underlying DPR technology.
But the overall performance results could be further
improved if better HLS tools were used.

In [22], a new approach for scheduling and placement
of task on a dynamic reconfigurable device based on
reflected binary gray space filling curve method is being
presented with the goal of minimizing task rejection ratio
and increasing FPGA utilization. The free space is
managed as one dimensional run-length based
representation. Also, a new method to find the
fragmentation is used. But the algorithm does not consider
routability, I/O communication, and heterogeneous FPGA.
The algorithm can be improved to reduce the total
reconfiguration overhead by reusing some of the task
locations.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 678-685 Zhu Shihai

685

In [23], a novel scheduling algorithm and two novel
allocation heuristics have been presented in the scope of
R3TOS project. The effectiveness of the proposed
algorithms is tested by means of a wide range of synthetic
simulations, but the evaluation of these approaches in a
real-world application is still under way.

5 Conclusions

We fully understood the present situations and
development trend of real-time operating system at home
and abroad, combined with the principle of μC/OS-II and
characteristics of FPGA technology, then put forward the
design scheme of hardware RTOS based on FPGA. Using
FPGA to realize the process of task management module

was emphasized. Specifically speaking, we implemented
the creation and deletion of a task, designed the logical
circuits of ready list and interrupt task management by
hardware. We also completed system debugging and
functional verification by means of Xilinx ISE software.
The simulation results showed that the implementation of
task management by hardware kept the correctness of
system calls, at the same time reduced the execution time
of system calls and the overhead of CPU.

Acknowledgments

We would like to acknowledge the partial support given by
the national natural science foundation project of China
(No. 60972127).

References

[1] Mooney V III, Lee J, Daleby A, Ingstrom K, Klevin T, Lindth L 2003

A comparison of the RTU hardware RTOS with a hardware/software
RTOS Proceedings of Asia South Pacific Design Automation
Conference (ASPDAC’2003)-12

[2] Mooney V III, Blough D M 2002 IEEE Design and Test of
Computers 19(6) 44-52

[3] Apostolos P Fournaris, Nicolas Sklavos 2014 Secure embedded
system hardware design – A flexible security and trust enhanced
approach Computers and Electrical Engineering 40 121-33

[4] Swarnalatha A, Shanthi A P 2014 Complete hardware evolution based
SoPC for evolvable hardware Applied Soft Computing 18 314-22

[5] So HK Borph 2010 An operating system for FPGA-based
reconfigurable computers PhD dissertation, Berkeley: University of
California

[6] Nakano T, Andy U, Itabashi M, Shiomi A, Imai M 1995 Hardware
Implementation of a Real-time Operating System Proceedings of the
Twelfth TRON Project International Symposium IEEE Computer
Society Press 34-42

[7] Waldeck P, Bergmann N 2003 Dynamic hardware-software
partitioning on reconfigurable system-on-chip Journal of System-on-
Chip for Real-Time Applications 30(2) 102-5

[8] Song M, Hong S, Chung Y 2009 Reducing the overhead of real-time
operating system through reconfigurable hardware Proceedings of
Digital System Design Architectures, Methods and Tools (DSD 2009)
311-4

[9] Vetromille M, Ost L, Maroon C A M, et al. 2006 RTOS Scheduler
Implementation in Hardware and Software for Real time
Applications Proceedings of the seventeenth IEEE international
workshop on rapid system prototyping (RSP’06) 163-8

[10] Kohout P, Ganesh B, Jacob B 2003 Hardware Support for Real-time
Operating Systems Proceedings of Automation and Test in Europe
Conference (DATE’03) 45-51

[11] Ycho, Syoo, Kchoi 2005 Scheduler implementation in MPSoC
Design Proceedings of Asia South Pacific Design Automation
Conference (ASPDAC’05) 151-6

[12] Akgul BS, Vmooney 2001 System-on-a-Chip Processor Support in
Hardware, Proceedings of Design Automation, and Test in Europe
(DATE 01), IEEE CS Press, Los Alamitos, Calif 633-9

[13] Fons F, Fons M, Canto E, Lo´pez M 2013 Real-time embedded
systems powered by FPGA dynamic partial self-reconfiguration: a
case study oriented to biometric recognition applications J Real-Time
Image Proc. 2013(8) 229-51

[14] Vyas S, Kumar C NG, Zambreno J, Gill C, Cytron R, Jones P 2014
IEEE Embedded Systems Letters 6(1) 4-8

[15] Hajduk Z 2014 An FPGA embedded microcontroller
Microprocessors and Microsystems 38 1-8

[16] Hao K,Xie F 2009 Componentizing hardware/software interface
design Proceedings of Design, Automation, and Test in Europe
(DATE 2009), IEEE Computer Society 232-7

[17] Shahbazi M, Poure P, Saadate S, Zolghadri M R 2013 IEEE
Transactions On Industrial Electronics 60(8) 3360-71

[18] Wang Y 2011 The key technologies of embedded real-time operating
system PhD dissertation, University of Electronic Science and
Technology, China

[19] Iturbe X, Benkrid K, Hong C, Ebrahim A, Torrego R, Martinez I,
Arslan T, Perez J 2013 IEEE Transactions On Computers 62(8)
1542-56

[20] Belaid I, Ouni B, Muller F 2013 Complete and Approximate
Methods for Off-line Placement of Hardware Tasks on
Reconfigurable Devices Journal of Circuits, Systems, and
Computers 22(2) 1-30

[21] Jozwik K, Honda S, Edahiro M, Tomiyama H, Takada H 2013
Rainbow: An Operating System for Software-Hardware
Multitasking on Dynamically Partially Reconfigurable FPGAs
International Journal of Reconfigurable Computing 2013 1-40

[22] Senoj J, Olakkenghil K Baskaran 2014 An FPGA Task Placement
Algorithm Using Reflected Binary Gray Space Filling Curve
International Journal of Reconfigurable Computing 2014 1-7

[23] Iturbe X, Benkrid K, Hong C, Ebrahim A, Arslan T, Martinez I 2013
Runtime Scheduling, Allocation, and Execution of Real-Time
Hardware Tasks onto Xilinx FPGAs Subject to Fault Occurrence
International Journal of Reconfigurable Computing 2013 1-32

Author

Shihai Zhu, China.

Current position: associate professor.
Scientific interest: embedded system, software and hardware co-design, new generation of computing system, the system chip SoC design method
and IP reuse technology.

